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Abstract. The paper concerns an adaptive time step size numerical solver for frac-
tional order state equations. The core of the solver applies SubIval, i.e. the subinterval-
based method for computations of the fractional derivative in Caputo and Riemann-
Liouville definitions. In the solver the step size is modified basing on a formula deduced
from an approximation of the truncation error. The error has been computed for either
the state variables themselves or their respective fractional derivatives. This resulted
in three different strategies for the adaptive step size solver (two of which have been
proposed for the case when the error is estimated for the derivatives). Two circuit
problems have served as examples for the numerical experiments.
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1. Introduction

Fractional calculus is a very popular topic of late, where many researchers are
interested in its applications in modeling and, hence, the design of methods allowing
to perform computations wherever the fractional derivative and fractional integral
(or, generally, the fractional integroderivative) appear.

Fractional integroderivatives have been considered as operations with respect to
time and space. This paper only concerns the first case for a derivative of order
α ∈ (0, 1].
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The most popular definitions of the fractional derivative are that of Caputo [6]:
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and the Riemann-Liouville definition [25]:
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where the author uses a special notation, where instead of the bounds, the integrod-
ifferentiation interval Ξ = [ta, tb] is used:

dα
Ξ
x(t) = taD

α
tb
x(t), (3)

which allows to skip the left-hand indices if an equation holds true for both fractional
derivative definitions.

Applications of the fractional derivative can be found i.a. in:

• modeling of human body bioimpedance [14],
• control theory and its applications, where fractional controllers are used [3, 34],
• diffusion kinetics in porous media [40]
• the design of fractional order filters [22, 29, 4],
• electromagnetic field analysis: when modeling dielectrics [7, 15] and when modeling

soft ferromagnetics [11],
• temperature field analyses [5, 31],
• modeling viscoelastic materials [26],
• robot path control [2],
• what the author is interested in mostly – circuit theory, where the fractional ca-

pacitor, described by the equation:

Cαd
α
Ξ
u(t) = i(t), (4)

is useful when modeling supercapacitors [20, 13], while the fractional coil model,
described by the equation:

Lαd
α
Ξ
i(t) = u(t), (5)

has found its uses in modeling of coils with ferromagnetic cores [30].

Solutions of problems with the fractional derivative can be obtained via analytical
means (where the solutions base on the Mittag-Leffler function [21]) or with a properly
selected numerical method. Some of the most commonly mentioned are:

• the simplest – methods that base on the fractional difference operator [27, 23],
• the Taylor expansion method [16],
• the Adomian decomposition method [9],
• collocation methods [28, 39],
• the differential transform method [37],
• the variational iteration method [38],
• fractional linear multistep methods [24].
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The method used for the computations of the paper is the subinterval-based
method, which is now referred to by its acronym – SubIval. It is a numerical method
that can be used for the approximation of the time derivative in initial value prob-
lems. For a given time step it conveniently allows to obtain a system of equations
from a system of fractional differential equations.

2. SubIval basis and resulting formula

This section gives a brief description on the basis of SubIval and the functionality
of its implementation in the DLL available at [18], which has been described in [33].
Being called the subinterval-based method comes from its fundamental partition of
the integrodifferentiation on the entire considered time interval Ξtot = [t0, tnow] into
subsequent subinterval integrodifferentiations:

dα
Ξtot

x(t) ≈

M∑

s=1

dα
Ξs
x̃s(t), (6)

where in each subinterval Ξs, with a unique index s, an interpolation is performed
in Θs ⊇ Ξs. How the subintervals are established in each time step is determined
by an original subinterval dynamics algorithm (explained in detail in [33]). After
integrodifferentiations of obtained monomials had been performed – SubIval results
in an implicit formula for each time step, where t = tnow:

dα
Ξtot

x(t) ≈ ax(tnow) + b, (7)

which is the same as when backward differentiation formulae are applied for first
order derivative computations. The generality of the formula allows it to be used
in any equation where the fractional derivative appears. It can be even applied in
nonlinear problems. Also, both the Caputo and Riemann-Liouville derivatives can be
assumed. The initial computations actually take into account the Caputo derivative,
however, the Riemann-Liouville fractional derivative can be computed easily from it
as for α ∈ (0, 1] it only differs by one term dependent on the initial condition [1]:
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3. SubIval in an adaptive step size scheme

A two stage methodology has been proposed [33], which follows what is commonly
known as the predictor-corrector scheme. Computations of a problem are performed
in two stages, which can be different in a lot of ways – in single options or even in the
methods being used. E.g. for integer order derivatives one can use an explicit formula
of order n in the predictor stage, while an implicit formula of the same order is used
in the corrector stage [12]. Another example is the use of two methods varying in their
order [8].
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The methodology proposed for SubIval (first presented in [32]) is one where in the
last integrodifferentiation (i.e. in ΞM on x̃M , which bases on the interpolation in ΘM )
for the first stage (called the predictor) the interpolation is of order qM − 1, while the
second stage (called the corrector) uses an interpolation of order qM .

Before further considerations, it is worthwhile to point out that already for every
variable x under a fractional derivative one obtains two sets of a and b parameters of
equation (7), where the ones for the predictor stage, in order to be distinguished, are
being called ap and bp further on.

4. Time step adjustment

In a predictor-corrector scheme it is important to implement a reliable methodology
for the adjustment of the step size. This is done by, first, an error estimation. Secondly,
a formula for the adjustment is used, which usually bases on information concerning
the truncation error.

In a separate analysis for the truncation error etrunc (which will be discussed in
a future paper), for the proposed methodology it has been found that the predictor
error:

ep trunc ≈ c∆tqM−α. (9)

Assuming that the corrector error is much smaller – the predictor error is used for
error estimation. The coefficient, by which the time step is multiplied is, therefore,
computed with the formula:

η = (qM−α)

√
ectrl

e
, (10)

where e is the error value computed for a considered variable x, while ectrl is called
the control error (related to the desired accuracy).

For each variable an error e and a proposed adjustment coefficient η is computed. If
any of the errors exceeds a previously given emax value then the time step is repeated.
In any case either the next or current step size is adjusted by taking the smallest η

value from those computed for all variables.

5. Error computation strategies

The error e can be computed in a number of different ways. It is, after all, only an
estimation of the true error between the SubIval computations and an exact solution.

The obvious choice is the computation of the solution for both sets of parameters
(predictor, resulting in xp, and corrector, resulting in x), where the relative difference
between these values, with respect to a selected xref value (being e.g. the maximum
of previously computed absolute values):

e =
|x− xp|

xref
· 100%. (11)
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The truncation error, however, has actually been obtained by judging the difference
between the predictor and corrector fractional derivative computations (while it is
also common for the truncation error to be actually obtained for the variable itself
in such analyses [10]). Hence, the formula above assumes that errors for the variable
can also be approximated through (9). An advantage is that it directly studies the
end result, which is, in most cases, more or equally as important as the derivative.

If one wishes to estimate the error through the computed derivative values:

dα
Ξtot

x(t) ≈ dp = apxp + bp (12)

and
dα
Ξtot

x(t) ≈ d = ax+ b (13)

then the following formula is used:

e =
|d− dp|

dref
· 100%. (14)

dref is handled in the same way for the derivatives as xref for the variables themselves.
Both so far introduced error computation strategies assume implicit schemes in the

predictor and corrector, hence, for both a solution must be computed after the deriva-
tive had been obtained. The derivative-based error computation approach, however,
can be simplified. First – the coefficient sets ap, bp and a, b are obtained but only
a solution is obtained for the second stage. The coefficients from the first stage are
used only to obtain the derivative:

dα
Ξtot

x(t) ≈ dp = apx+ bp. (15)

Notice that now the solution x is used in both d and dp computations.

6. Computational examples

Three error computation strategies have been presented in the previous section:

• the variable based approach (further on called the x-based approach), where equa-
tion (11) is used,

• the derivative based approach (further on called the d-based approach), where
equation (14) is applied; dp is computed with formula (12), while d is obtained
through (13),

• the single solution derivative based approach (further on called the simplified
d-based approach), where dp is computed through (15), while d is computed with
(13) as in the standard d-based approach.

Two computational examples, with referential (analytical or steady state) solutions,
have been brought forward to determine what are the actual error values in comparison
to the values estimated in the time stepping process.
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Each of these problems can be brought, firstly, to the system of equations [33]:

{
MIy(t) +MIIx(t) = Tv(t),

dα

Ξ
x(t) +MIIIy(t) = 0,

(16)

where the vector of fractional derivatives (in either Riemann-Liouville or Caputo
definitions):

dα

Ξ
x(t) = [dα1

Ξ
x1(t) d

α2

Ξ
x2(t) . . . d

αnx

Ξ
xnx

(t) ]T. (17)

x(t) is the vector of nx state variables, α is a vector of the fractional derivative orders,
y(t) is a vector of ny variables that are not placed in the state vector x(t), v(t) is
a vector of source time functions, MI is an ny ×ny matrix, MII is an ny ×nx matrix,
MIII is an nx×ny matrix and T is an ny ×nv matrix. Secondly, the following system
of fractional state equations can be obtained:

dα

Ξ
x(t) = Ax(t) +Bv(t). (18)

A is an nx × nx matrix, B is an nx × nv matrix. One can obtain (18) from (16) by
applying the formulae:

A = MIII(M
−1
I MII) (19)

and:
B = −MIII(M

−1
I T ). (20)

6.1. Series RLC circuit

The first example concerns an RLC series circuit with a unit step voltage source
(figure 1). Both the coil and capacitor are elements of order α.

Fig. 1. Exemplary circuit problem: fractional RLC series circuit

As it is typical in such problems – the capacitor voltage and coil current are taken
into account as the state variables. The problem has an analytical solution available
in [36] assuming that the capacitor and coil are of the same order α.

The x-based approach was the first one being tested. The estimated error has been
compared with the actual error being the relative difference between the numerical
and analytical solution:

ean =
|x− xan|

max|xan|
. (21)

The results are depicted in figure 2.
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Fig. 2. Comparison of estimated and actual errors (for the RLC circuit, using the x-based approach)
of: a) iL, b) uC

The step size adjustment is performed correctly as it keeps the maximum error
close to ectrl. The estimated error and true error, however, are very different at the
beginning. Obviously, the difference between the predictor and corrector results is
an estimation of only one term as given in (9). The remaining terms cannot be esti-
mated using this methodology, hence there can always be a difference in the numerical
solution and an exact solution.

The values of the estimated error exceeding the emax value, at the initial stages
of the computations, are inevitable since initially the error estimation is computed
as relative to xref , which is either an arbitrarily selected value xlow or the maximum
of absolute values so far obtained for the variable (whichever is bigger). Hence, for
a small xlow the time step is reduced to its minimum value of ∆tmin and only increased
when a couple of new nodes are added.

Next, the d-based approach is applied. The estimated error is compared with the
actual relative difference between the derivative of the numerical and analytical solu-
tion:

ed an =
|d− dan|

max|dan|
. (22)

The results are presented in figure 3.
The comparison shows that for the selected example either strategy can be applied

and are similarly accurate for the selected problem.
Finally, the simplified d-based approach is applied. The estimated error is compared

with ed an as in the d-based approach. The results are depicted in figure 4.
It comes as no surprise that the error estimation has not improved as the concept

of the simplified d-based approach assumes an even lesser accuracy of the error esti-
mation. What is surprising, however, is that the estimation presents results similar to
those of the standard d-based approach. This is promising as the simplified approach
only requires one solution, which (especially for problems with many equations) could
reduce the computation time by around 50%.
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Fig. 3. Comparison of estimated and actual errors (for the RLC circuit, using the d-based approach)

of: a) diL
dt

, b) duC

dt

Fig. 4. Comparison of estimated and actual errors (for the RLC circuit, using the simplified d-based

approach) of: a) diL
dt

, b) duC

dt

6.2. AC circuit with fractional elements

The second example concerns the steady state computation of a linear circuit with
sinusoidal sources (figure 5). The steady state solution can be obtained through an
analysis applying complex numbers like in [35].

The computed steady state solution and that of the adaptive step size solver (ap-
plying SubIval) have been compared. The capacitor voltages and coil current time
functions constitute the state vector x. Actually, nT = 10 periods (T = 1

f
) have

been computed, which assured a steady state of the time dependent solution in
t ∈ [(nT − 1)T, nTT ]. An error analysis, like the one in the previous subsection,
has been performed for this interval. The results for the x-based approach are given
in figure 6.
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Fig. 5. Exemplary circuit problem: an AC circuit with fractional capacitors and coils

Fig. 6. Comparison of estimated and actual errors (for the AC circuit, using the x-based approach)
of: a) uC1

, b) iL1
, c) uC2

, d) iL2

There is a significant difference between the computed errors. The time adaptive
strategy, however, is successful at keeping the maximum estimated error at values
close to ectrl.

Next – the d-based approach has been applied. The errors obtained for the final
period have been presented in figure 7.
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Fig. 7. Comparison of estimated and actual errors (for the AC circuit, using the d-based approach)
of: a) uC1

, b) iL1
, c) uC2

, d) iL2

Again the part of the error that could not be estimated has been significant as the
difference between the estimated truncation error and the actual difference (between
the numerical and analytical solutions) is apparent.

What is interesting is that this time there has been a need for more time steps to
sustain the maximum of estimated errors at values close to ectrl. This reduction of
the step size did, however, not improve the actual solution accuracy (it has not been
shown in the figure but the actual error for the state variables has also not improved
greatly). This inaccuracy will be further investigated in future studies.

The simplified d-based approach has been tested next. The error computation
results for this strategy are presented in figure 8.

Again the simplified d-based approach has proven to be efficient enough as it resem-
bles similar results as in the standard d-based approach. However, to keep the error
of the computed derivatives at ectrl the number of time steps had to be significantly
bigger than for the x-based approach (and did not greatly improve the accuracy of
the solution).



Error computation strategies in an adaptive step size solver for time fractional problems 99

Fig. 8. Comparison of estimated and actual errors (for the AC circuit, using the simplified d-based
approach) of: a) uC1

, b) iL1
, c) uC2

, d) iL2

7. Summary and conclusions

Three error estimation options have been studied for a step size adaptive solver
applying SubIval. The error has either been estimated taking into account the com-
puted state variable values (this has been called the x-based approach), the computed
fractional derivative values of the state variables (the d-based approach) and an ap-
proach taking into account two fractional derivative values, yet both obtained from
the same (single) solution (the simplified d-based approach).

For all strategies the step adaptivity has been properly implemented as it managed
to successfuly keep the maximum of estimated error values close to a desired value
ectrl.

The error control also has an effect on the actual error – though being different, it
also seems to keep the error within range of values representing a reasonable accuracy.

A negative observation is that for the AC problem, after reducing the step size (re-
sulting from the fact that the d-based approach encountered a bigger error estimation
result) the actual error has not improved greatly. This fact will be investigated more
in future studies. Perhaps purely mathematical examples, where the truncation error
is actually close to the estimated value, should be studied to determine the source of
inaccuracies. One also needs to take into account that the estimation only takes into
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account a local truncation error. A global truncation error is not taken into account
but can definitely have an effect on the numerical solution.

As for the error estimation it would be interesting to apply another scheme, e.g.
based on same order methods as is the suggested practice with backward differen-
tiation formulae. Then at least the predictor subinterval strategy would have to be
different.

The choice of the error strategy seems to depend mostly on whether the error of the
derivative or the variable itself is important, though one must remember that, theo-
retically, formula (9) has been derived for a truncation error analysis of the derivative.
Also, the simplified d-based approach has proven to be efficient as it gives similar re-
sults to the standard d-based approach but requires only one solution to be computed.
This greatly reduces the computation time for problems resulting in many equations.

8. Remarks on computation tools

The computations have been performed with programs and libraries written by
the author in C#. The numerical computations of the fractional derivative have been
performed with the SubIval DLL available at [18]. The library uses a part of the code
given in [17] for the computation of the gamma function. The step size adaptive solver
required a system of equations to be solved at each iteration. The linear systems have
been solved by applying methods from the MathNet Numerics library [19].
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